大数据作为新一代信息技术的代表,已开始在工业设计、研发、制造、销售、服务等环节取得应用,并成为推动互联网与工业融合创新的重要因素。面对大数据的浪潮,传统企业要主动把握大数据的发展方向,深入挖掘大数据的价值,分析需求偏好、改善生产工艺以及提升企业的内部管理水平等。
当前,大数据最引人关注的一个方面是预测分析。企业可以利用数据中隐藏的模式、识别各种风险和机遇,比如交叉销售和升级销售的目标客户、客户流失倾向、经济预测、信用评级和保险承保等。例如,当需要开车时,上百万美国人选择aaa(美国汽车协会)的旅游救援、保险和紧急拖车服务。为了更好地理解客户需求,aaa总部组件了一个活动中心,应用 predictive analytics软件进行预测分析。
利用大数据工具对供应链进行分析以选择供应商、优化物流配送方案和进行价格谈判等;利用大数据分析工具可以对商品进行销售预测,分析顾客的购买偏好,确定商品的价格。中国商飞通过商务智能解决方案和业务经营管控平台的实施,成功构建了实时、透明、智能的业务经营管理平台,实现了质量全程可追溯以及实时运营;实现高效业务协同,增强了全供应链数据共享与智能分析,为管理决策提供强有力保障。
大数据是制造业智能化的基础,其在制造业大规模定制中的应用包括数据采集、数据管理、订单管理、智能化制造、定制平台等,核心是定制平台。定制数据达到一定的数量级,就可以实现大数据应用。通过对大数据的挖掘,实现流行预测、精准匹配、时尚管理、社交应用、营销推送等更多的应用。同时,大数据能够帮助制造业企业提升营销的针对性,降低物流和库存的成本,减少生产资源投入的风险。
消费者与制造业企业之间的交互和交易行为将产生大量数据,挖掘和分析这些消费者动态数据,能够帮助消费者参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。制造业企业对这些数据进行处理,进而传递给智能设备,进行数据挖掘,设备调整,原材料准备等步骤,才能生产出符合个性化需求的定制产品。
大数据的应用能给企业带来诸多便利,实现了以往常规技术手段无法实现的目标。但也要认识到大数据在制造业大规模运用的时间还不是很长,很多企业应用经验相对缺乏。为了确保大数据在实际运用中能够发挥其应有的效果,应注意以下几点:
对于海量的数据要去粗取精,去伪存真。对于业务数据,应当在进行实时分析的基础上,将决策支持的数据通过移动端推送给企业各级负责人,决策过程用数据说话,不再是凭经验、拍脑袋。
大数据要形成一定的数据决策力。数据决策力就是基于数据进行科学决策,并且让数据发挥价值的能力。在大数据时代,这种能力已经变成跟以往的财务能力、生产能力等一样不可或缺的能力。要重视数据安全性。随着产生、存储、分析的数据量越来越大,隐私问题在未来的几年也将愈加凸显。所以新的数据保护要求以及立法机构和监管部门的完善应当提上日程。